- Simple Tips for PostgreSQL Query Optimization - Jun 22, 2018.
A single query optimization tip can boost your database performance by 100x. Although we usually advise our customers to use these tips to optimize analytic queries (such as aggregation ones), this post is still very helpful for any other type of query.
Optimization, Postgres, SQL, Statsbot
- ETL vs ELT: Considering the Advancement of Data Warehouses - May 22, 2018.
The traditional concept of ETL is changing towards ELT – when you’re running transformations right in the data warehouse. Let’s see why it’s happening, what it means to have ETL vs ELT, and what we can expect in the future.
BigQuery, Data Warehouse, ELT, ETL, Statsbot
- Scalable Select of Random Rows in SQL - Apr 5, 2018.
Performance boosts are achieved by selecting random rows or the sampling technique. Let’s learn how to select random rows in SQL.
Sampling, SQL, Statsbot
- Calculating Customer Lifetime Value: SQL Example - Feb 15, 2018.
In order to understand how to estimate LTV, it is useful to first think about evaluating a customer’s lifetime value at the end of their relationship with us.
Customer Analytics, Lifetime Value, SQL, Statsbot
- Data Structures Related to Machine Learning Algorithms - Jan 30, 2018.
If you want to solve some real-world problems and design a cool product or algorithm, then having machine learning skills is not enough. You would need good working knowledge of data structures.
Pages: 1 2
Machine Learning, Mathematics, Programming, Statsbot
- A Guide for Customer Retention Analysis with SQL - Dec 19, 2017.
Customer retention curves are essential to any business looking to understand its clients, and will go a long way towards explaining other things like sales figures or the impact of marketing initiatives. They are an easy way to visualize a key interaction between customers and the business.
Pages: 1 2
Analytics, Customer Analytics, SQL, Statsbot
- Machine Learning Algorithms: Which One to Choose for Your Problem - Nov 14, 2017.
This article will try to explain basic concepts and give some intuition of using different kinds of machine learning algorithms in different tasks. At the end of the article, you’ll find the structured overview of the main features of described algorithms.
Algorithms, Machine Learning, Reinforcement Learning, Statsbot, Supervised Learning, Unsupervised Learning
- A Guide For Time Series Prediction Using Recurrent Neural Networks (LSTMs) - Oct 5, 2017.
Looking at the strengths of a neural network, especially a recurrent neural network, I came up with the idea of predicting the exchange rate between the USD and the INR.
Pages: 1 2
Finance, LSTM, Neural Networks, Recurrent Neural Networks, Statsbot
- Ensemble Learning to Improve Machine Learning Results - Sep 22, 2017.
Ensemble methods are meta-algorithms that combine several machine learning techniques into one predictive model in order to decrease variance (bagging), bias (boosting), or improve predictions (stacking).
Pages: 1 2
Ensemble Methods, Machine Learning, Statsbot
- Machine Learning Translation and the Google Translate Algorithm - Sep 14, 2017.
Today, we’ve decided to explore machine translators and explain how the Google Translate algorithm works.
Google, Machine Learning, Machine Translation, Natural Language Processing, Statsbot
- Support Vector Machine (SVM) Tutorial: Learning SVMs From Examples - Aug 28, 2017.
In this post, we will try to gain a high-level understanding of how SVMs work. I’ll focus on developing intuition rather than rigor. What that essentially means is we will skip as much of the math as possible and develop a strong intuition of the working principle.
Pages: 1 2 3
Algorithms, Machine Learning, Statsbot, Support Vector Machines, SVM
- Recommendation System Algorithms: An Overview - Aug 22, 2017.
This post presents an overview of the main existing recommendation system algorithms, in order for data scientists to choose the best one according a business’s limitations and requirements.
Algorithms, Recommendations, Recommender Systems, Statsbot