- How to do “Limitless” Math in Python - Oct 7, 2021.
How to perform arbitrary-precision computation and much more math (and fast too) than what is possible with the built-in math library in Python.
Linear Algebra, Mathematics, Probability, Python, Statistics
- Advanced Statistical Concepts in Data Science - Sep 30, 2021.
The article contains some of the most commonly used advanced statistical concepts along with their Python implementation.
Career Advice, Data Science, Distribution, Probability, Statistics
- Important Statistics Data Scientists Need to Know - Sep 29, 2021.
Several fundamental statistical concepts must be well appreciated by every data scientist -- from the enthusiast to the professional. Here, we provide code snippets in Python to increase understanding to bring you key tools that bring early insight into your data.
Bayes Theorem, Data Science, Probability, Statistics
- 11 Important Probability Distributions Explained - Jul 20, 2021.
There are many distribution functions considered in statistics and machine learning, which can seem daunting to understand at first. Many are actually closely related, and with these intuitive explanations of the most important probability distributions, you can begin to appreciate the observations of data these distributions communicate.
Explained, Probability, Statistics
- The 7 Best Open Source AI Libraries You May Not Have Heard Of - Jun 9, 2021.
AI researchers today have many exciting options for working with specialized tools. Although starting original projects from scratch is often not necessary, knowing which existing library to leverage remains a challenge. This list of generally unknown yet awesome, open-source libraries offers an interesting collection to consider for state-of-the-art research that spans from automatic machine learning to differentiable quantum circuits.
AI, Hyperparameter, Julia, Open Source, Probability, Quantum Computing
- Fast and Intuitive Statistical Modeling with Pomegranate - Dec 21, 2020.
Pomegranate is a delicious fruit. It can also be a super useful Python library for statistical analysis. We will show how in this article.
Distribution, Markov Chains, Probability, Python, Statistical Modeling
- Essential Math for Data Science: Probability Density and Probability Mass Functions - Dec 7, 2020.
In this article, we’ll cover probability mass and probability density function in this sample. You’ll see how to understand and represent these distribution functions and their link with histograms.
Data Science, Mathematics, Probability, Statistics
- The Best Free Data Science eBooks: 2020 Update - Sep 30, 2020.
The author has updated their list of best free data science books for 2020. Read on to see what books you should grab.
Books, Data Science, Free ebook, Probability, Programming, Statistics
- Before Probability Distributions - Jul 16, 2020.
Why do we use probability distributions, and why do they matter?
Distribution, Probability, Statistics
- 4 Free Math Courses to do and Level up your Data Science Skills - Jun 22, 2020.
Just as there is no Data Science without data, there's no science in data without mathematics. Strengthening your foundational skills in math will level you up as a data scientist that will enable you to perform with greater expertise.
Bayesian, Coursera, edX, Inference, Linear Algebra, Mathematics, Online Education, Principal component analysis, Probability, Python, Statistics
- Overview of data distributions - Jun 10, 2020.
With so many types of data distributions to consider in data science, how do you choose the right one to model your data? This guide will overview the most important distributions you should be familiar with in your work.
Binomial, Distribution, Normal Distribution, Poisson Distribution, Probability, Statistics
- Looking Normal(ly Distributed) - May 20, 2020.
This article investigates when some probability distributions look normal "enough" for a statistical test.
Data Visualization, Distribution, Normal Distribution, Probability, Statistics
- Linear to Logistic Regression, Explained Step by Step - Mar 3, 2020.
Logistic Regression is a core supervised learning technique for solving classification problems. This article goes beyond its simple code to first understand the concepts behind the approach, and how it all emerges from the more basic technique of Linear Regression.
Classification, Explained, Linear Regression, Logistic Regression, Probability
- Data Science Curriculum for self-study - Feb 26, 2020.
Are you asking the question, "how do I become a Data Scientist?" This list recommends the best essential topics to gain an introductory understanding for getting started in the field. After learning these basics, keep in mind that doing real data science projects through internships or competitions is crucial to acquiring the core skills necessary for the job.
Advice, Data Science, Data Science Education, Data Visualization, Mathematics, Probability, Programming, Statistics
- Probability Distributions in Data Science - Feb 26, 2020.
Some machine learning models are designed to work best under some distribution assumptions. Therefore, knowing with which distributions we are working with can help us to identify which models are best to use.
Data Science, Distribution, Normal Distribution, Probability
- Optimal Estimation Algorithms: Kalman and Particle Filters - Feb 5, 2020.
An introduction to the Kalman and Particle Filters and their applications in fields such as Robotics and Reinforcement Learning.
Kalman Filters, Machine Learning, Probability
- Uber Has Been Quietly Assembling One of the Most Impressive Open Source Deep Learning Stacks in the Market - Jan 27, 2020.
Many of the technologies used by Uber teams have been open sourced and received accolades from the machine learning community. Let’s look at some of my favorites.
Deep Learning, Interpretability, NLP, Probability, Programming, Scalability, Uber
- Probability Learning: Naive Bayes - Nov 26, 2019.
This post will describe various simplifications of Bayes' Theorem, that make it more practical and applicable to real world problems: these simplifications are known by the name of Naive Bayes. Also, to clarify everything we will see a very illustrative example of how Naive Bayes can be applied for classification.
Bayes Theorem, Learning, Naive Bayes, Probability
- The Math Behind Bayes - Nov 19, 2019.
This post will be dedicated to explaining the maths behind Bayes Theorem, when its application makes sense, and its differences with Maximum Likelihood.
Bayes Theorem, Mathematics, Probability
- Probability Learning: Maximum Likelihood - Nov 5, 2019.
The maths behind Bayes will be better understood if we first cover the theory and maths underlying another fundamental method of probabilistic machine learning: Maximum Likelihood. This post will be dedicated to explaining it.
Learning, Probability, Statistics
- How Bayes’ Theorem is Applied in Machine Learning - Oct 28, 2019.
Learn how Bayes Theorem is in Machine Learning for classification and regression!
Bayes Theorem, Machine Learning, Naive Bayes, Probability
- Probability Learning: Bayes’ Theorem - Oct 16, 2019.
Learn about one of the fundamental theorems of probability with an easy everyday example.
Bayes Theorem, Naive Bayes, Probability
- An Overview of Density Estimation - Oct 14, 2019.
Density estimation is estimating the probability density function of the population from the sample. This post examines and compares a number of approaches to density estimation.
Generative Adversarial Network, Probability, Statistics
- Beta Distribution: What, When & How - Sep 25, 2019.
This article covers the beta distribution, and explains it using baseball batting averages.
Distribution, Probability, Statistics
- How to count Big Data: Probabilistic data structures and algorithms - Aug 26, 2019.
Learn how probabilistic data structures and algorithms can be used for cardinality estimation in Big Data streams.
Algorithms, Big Data, Probability
- What is Poisson Distribution? - Aug 14, 2019.
An solid overview of the Poisson distribution, starting from why it is needed, how it stacks up to binomial distribution, deriving its formula mathematically, and more.
Distribution, Poisson Distribution, Probability, Statistics
- 5 Probability Distributions Every Data Scientist Should Know - Jul 4, 2019.
Having an understanding of probability distributions should be a priority for data scientists. Make sure you know what you should by reviewing this post on the subject.
Data Science, Data Scientist, Distribution, Normal Distribution, Probability
- Probability Mass and Density Functions - May 21, 2019.
This content is part of a series about the chapter 3 on probability from the Deep Learning Book by Goodfellow, I., Bengio, Y., and Courville, A. (2016). It aims to provide intuitions/drawings/python code on mathematical theories and is constructed as my understanding of these concepts.
Pages: 1 2
Mathematics, Probability, Statistics
- Unfolding Naive Bayes From Scratch - Sep 25, 2018.
Whether you are a beginner in Machine Learning or you have been trying hard to understand the Super Natural Machine Learning Algorithms and you still feel that the dots do not connect somehow, this post is definitely for you!
Pages: 1 2
Bayesian, Classification, Naive Bayes, Probability, Statistics
- Machine Learning Cheat Sheets - Sep 11, 2018.
Check out this collection of machine learning concept cheat sheets based on Stanord CS 229 material, including supervised and unsupervised learning, neural networks, tips & tricks, probability & stats, and algebra & calculus.
Cheat Sheet, Deep Learning, Machine Learning, Mathematics, Neural Networks, Probability, Statistics, Supervised Learning, Tips, Unsupervised Learning
- Basic Statistics in Python: Probability - Aug 21, 2018.
At the most basic level, probability seeks to answer the question, "What is the chance of an event happening?" To calculate the chance of an event happening, we also need to consider all the other events that can occur.
Normal Distribution, Probability, Python, Statistics
- Why Data Scientists Love Gaussian - Jun 26, 2018.
Gaussian distribution model, often identified with its iconic bell shaped curve, also referred as Normal distribution, is so popular mainly because of three reasons.
Distribution, Probability, Statistics
- How Bayesian Networks Are Superior in Understanding Effects of Variables - Nov 9, 2017.
Bayes Nets have remarkable properties that make them better than many traditional methods in determining variables’ effects. This article explains the principle advantages.
Bayesian, Bayesian Networks, Predictive Models, Probability, Regression, Statistics
- 30 Essential Data Science, Machine Learning & Deep Learning Cheat Sheets - Sep 22, 2017.
This collection of data science cheat sheets is not a cheat sheet dump, but a curated list of reference materials spanning a number of disciplines and tools.
Pages: 1 2 3
Cheat Sheet, Data Science, Deep Learning, Machine Learning, Neural Networks, Probability, Python, R, SQL, Statistics
- The Surprising Complexity of Randomness - Jun 15, 2017.
The reason we have pseudorandom numbers is because generating true random numbers using a computer is difficult. Computers, by design, are excellent at taking a set of instructions and carrying them out in the exact same way, every single time.
Complexity, Probability, Random, Randomization
- Stuff Happens: A Statistical Guide to the “Impossible” - Apr 6, 2017.
Why are some people struck by lightning multiple times or, more encouragingly, how could anyone possibly win the lottery more than once? The odds against these sorts of things are enormous.
Probability, Statistics
- Introduction to Bayesian Inference - Dec 16, 2016.
Bayesian inference is a powerful toolbox for modeling uncertainty, combining researcher understanding of a problem with data, and providing a quantitative measure of how plausible various facts are. This overview from Datascience.com introduces Bayesian probability and inference in an intuitive way, and provides examples in Python to help get you started.
Bayesian, Datascience.com, Inference, Probability
- What Statistics Topics are Needed for Excelling at Data Science? - Aug 2, 2016.
Here is a list of skills and statistical concepts suggested for excelling at data science, roughly in order of increasing complexity.
Bayesian, Distribution, Machine Learning, Markov Chains, Probability, Regression, Statistics
- Big Data, Bible Codes, and Bonferroni - Jul 8, 2016.
This discussion will focus on 2 particular statistical issues to be on the look out for in your own work and in the work of others mining and learning from Big Data, with real world examples emphasizing the importance of statistical processes in practice.
Bible, Big Data, Bonferroni, Probability, Statistics, Terrorism