- Model Drift in Machine Learning – How To Handle It In Big Data - Aug 17, 2021.
Rendezvous Architecture helps you run and choose outputs from a Champion model and many Challenger models running in parallel without many overheads. The original approach works well for smaller data sets, so how can this idea adapt to big data pipelines?
Big Data, Data Engineering, Data Preparation, Machine Learning, Model Drift
- Here’s what you need to look for in a model server to build ML-powered services - Sep 15, 2020.
More applications are being infused with machine learning while MLOps processes and best practices are becoming well established. Critical to these software and systems are the servers that run the models, which should feature key capabilities to drive successful enterprise-scale productionizing of machine learning.
Deployment, Life Cycle, MLOps, Model Drift, Model Performance, Monitoring, Production, Scalability
- How to make AI/Machine Learning models resilient during COVID-19 crisis - Jun 11, 2020.
COVID-19-driven concept shift has created concern over the usage of AI/ML to continue to drive business value following cases of inaccurate outputs and misleading results from a variety of fields. Data Science teams must invest effort in post-model tracking and management as well as deploy an agility in the AI/ML process to curb problems related to concept shift.
AI, Coronavirus, COVID-19, Machine Learning, Model Drift, Modeling
- The Ultimate Guide to Model Retraining - Dec 16, 2019.
Once you have deployed your machine learning model into production, differences in real-world data will result in model drift. So, retraining and redeploying will likely be required. In other words, deployment should be treated as a continuous process. This guide defines model drift and how to identify it, and includes approaches to enable model training.
Deployment, Machine Learning, Model Drift, Model Performance, Monitoring, Production, Training Data