- Multivariate Time Series Analysis with an LSTM based RNN - Oct 29, 2021.
Check out this codeless solution using the Keras integration.
Keras, Knime, Low-Code, LSTM, Time Series
- Attention mechanism in Deep Learning, Explained - Jan 11, 2021.
Attention is a powerful mechanism developed to enhance the performance of the Encoder-Decoder architecture on neural network-based machine translation tasks. Learn more about how this process works and how to implement the approach into your work.
Attention, Deep Learning, Explained, LSTM, Machine Translation
- PyTorch LSTM: Text Generation Tutorial - Jul 13, 2020.
Key element of LSTM is the ability to work with sequences and its gating mechanism.
LSTM, Natural Language Generation, NLP, Python, PyTorch
- Generating cooking recipes using TensorFlow and LSTM Recurrent Neural Network: A step-by-step guide - Jul 3, 2020.
A character-level LSTM (Long short-term memory) RNN (Recurrent Neural Network) is trained on ~100k recipes dataset using TensorFlow. The model suggested the recipes "Cream Soda with Onions", "Puff Pastry Strawberry Soup", "Zucchini flavor Tea", and "Salmon Mousse of Beef and Stilton Salad with Jalapenos". Yum!? Follow along this detailed guide with code to create your own recipe-generating chef.
Cooking, Deep Learning, Humor, LSTM, Natural Language Generation, TensorFlow
- The Unreasonable Progress of Deep Neural Networks in Natural Language Processing (NLP) - Jun 29, 2020.
Natural language processing has made incredible advances through advanced techniques in deep learning. Learn about these powerful models, and find how close (or far away) these approaches are to human-level understanding.
Deep Learning, LSTM, NLP, Transfer Learning, Transformer, Trends
- 13 must-read papers from AI experts - May 20, 2020.
What research articles do top AI experts in the field recommend? Find out which ones and why, then be sure to add each to your reading to do list.
AI, Andrew Ng, Hyperparameter, Kirk D. Borne, LSTM, Research
- LSTM for time series prediction - Apr 27, 2020.
Learn how to develop a LSTM neural network with PyTorch on trading data to predict future prices by mimicking actual values of the time series data.
Deep Learning, Forecasting, LSTM, Neural Networks, Recurrent Neural Networks, Time Series
- A Comprehensive Guide to Natural Language Generation - Jan 7, 2020.
Follow this overview of Natural Language Generation covering its applications in theory and practice. The evolution of NLG architecture is also described from simple gap-filling to dynamic document creation along with a summary of the most popular NLG models.
LSTM, Markov Chains, Narrative Science, Natural Language Generation, Natural Language Processing, Recurrent Neural Networks, Sciforce, Transformer
- Deep Learning for NLP: ANNs, RNNs and LSTMs explained! - Aug 7, 2019.
Learn about Artificial Neural Networks, Deep Learning, Recurrent Neural Networks and LSTMs like never before and use NLP to build a Chatbot!
Deep Learning, Explained, LSTM, Neural Networks, NLP, Recurrent Neural Networks
- Training a Neural Network to Write Like Lovecraft - Jul 11, 2019.
In this post, the author attempts to train a neural network to generate Lovecraft-esque prose, known to be awkward and irregular at best. Did it end in success? If not, any suggestions on how it might have? Read on to find out.
Keras, LSTM, Natural Language Generation, Neural Networks, Python, TensorFlow
- KDnuggets™ News 19:n21, Jun 5: Transitioning your Career to Data Science; 11 top Data Science, Machine Learning platforms; 7 Steps to Mastering Intermediate ML w. Python - Jun 5, 2019.
The results of KDnuggets 20th Annual Software Poll; How to transition to a Data Science career; Mastering Intermediate Machine Learning with Python ; Understanding Natural Language Processing (NLP); Backprop as applied to LSTM, and much more.
Backpropagation, Data Science Platform, LSTM, Machine Learning, NLP, Python
- Understanding Backpropagation as Applied to LSTM - May 30, 2019.
Backpropagation is one of those topics that seem to confuse many once you move past feed-forward neural networks and progress to convolutional and recurrent neural networks. This article gives you and overall process to understanding back propagation by giving you the underlying principles of backpropagation.
Backpropagation, LSTM, Neural Networks, Recurrent Neural Networks
- Using a Keras Long Short-Term Memory (LSTM) Model to Predict Stock Prices - Nov 21, 2018.
LSTMs are very powerful in sequence prediction problems because they’re able to store past information. This is important in our case because the previous price of a stock is crucial in predicting its future price.
Finance, Keras, LSTM, Neural Networks, Stocks
- Text Classification & Embeddings Visualization Using LSTMs, CNNs, and Pre-trained Word Vectors - Jul 5, 2018.
In this tutorial, I classify Yelp round-10 review datasets. After processing the review comments, I trained three model in three different ways and obtained three word embeddings.
Convolutional Neural Networks, Keras, LSTM, NLP, Python, Text Classification, Word Embeddings
- Taming LSTMs: Variable-sized mini-batches and why PyTorch is good for your health - Jun 14, 2018.
After reading this, you’ll be back to fantasies of you + PyTorch eloping into the sunset while your Recurrent Networks achieve new accuracies you’ve only read about on Arxiv.
LSTM, Neural Networks, PyTorch, Recurrent Neural Networks
- Generating Text with RNNs in 4 Lines of Code - Jun 14, 2018.
Want to generate text with little trouble, and without building and tuning a neural network yourself? Let's check out a project which allows you to "easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code."
Donald Trump, LSTM, NLP, Python, Recurrent Neural Networks, Twitter
- 5 Fantastic Practical Natural Language Processing Resources - Feb 22, 2018.
This post presents 5 practical resources for getting a start in natural language processing, covering a wide array of topics and approaches.
Deep Learning, Keras, LSTM, Neural Networks, NLP, NLTK, Python
- The 10 Deep Learning Methods AI Practitioners Need to Apply - Dec 13, 2017.
Deep learning emerged from that decade’s explosive computational growth as a serious contender in the field, winning many important machine learning competitions. The interest has not cooled as of 2017; today, we see deep learning mentioned in every corner of machine learning.
Pages: 1 2
Backpropagation, Convolutional Neural Networks, Deep Learning, Dropout, Gradient Descent, LSTM, Neural Networks, Transfer Learning
- 7 Steps to Mastering Deep Learning with Keras - Oct 30, 2017.
Are you interested in learning how to use Keras? Do you already have an understanding of how neural networks work? Check out this lean, fat-free 7 step plan for going from Keras newbie to master of its basics as quickly as is possible.
7 Steps, Convolutional Neural Networks, Deep Learning, Keras, Logistic Regression, LSTM, Machine Learning, Neural Networks, Python, Recurrent Neural Networks
- A Guide For Time Series Prediction Using Recurrent Neural Networks (LSTMs) - Oct 5, 2017.
Looking at the strengths of a neural network, especially a recurrent neural network, I came up with the idea of predicting the exchange rate between the USD and the INR.
Pages: 1 2
Finance, LSTM, Neural Networks, Recurrent Neural Networks, Statsbot
- Going deeper with recurrent networks: Sequence to Bag of Words Model - Aug 8, 2017.
Deep learning makes it possible to convert unstructured text to computable formats, incorporating semantic knowledge to train machine learning models. These digital data troves help us understand people on a new level.
Deep Learning, LSTM, Machine Learning, NLP, Recurrent Neural Networks