- Explainable Forecasting and Nowcasting with State-of-the-art Deep Neural Networks and Dynamic Factor Model - Dec 27, 2021.
Review this detailed tutorial with code and revisit the decades-long old problem using a democratized and interpretable AI framework of how precisely can we anticipate the future and understand its causal factors?
Data Exploration, Explainable AI, Feature Engineering, Forecasting
- 11 Most Practical Data Science Skills for 2022 - Oct 19, 2021.
While the field of data science continues to evolve with exciting new progress in analytical approaches and machine learning, there remain a core set of skills that are foundational for all general practitioners and specialists, especially those who want to be employable with full-stack capabilities.
Career Advice, Data Science Skills, Explainable AI, Feature Engineering, GitHub, NLP, Regression, SQL
- What Makes AI Trustworthy? - May 11, 2021.
This blog pertains to the importance of why AI needs to be trustworthy as well as what makes it trustworthy. AI predictions/suggestions should not just be taken at face value, but rather delved into at a deeper level. We need to understand how an AI system makes its predictions to put our trust in it. Trust should not be built on prediction accuracy alone.
AI, Bias, Explainable AI, Trust
- Interpretable Machine Learning: The Free eBook - Apr 9, 2021.
Interested in learning more about interpretability in machine learning? Check out this free eBook to learn about the basics, simple interpretable models, and strategies for interpreting more complex black box models.
AI, Explainability, Explainable AI, Free ebook, Interpretability
- Adversarial Attacks on Explainable AI - Feb 9, 2021.
Are explainability methods black-box themselves?
Adversarial, AI, Explainability, Explainable AI
- Deep learning doesn’t need to be a black box - Feb 5, 2021.
The cultural perception of AI is often suspect because of the described challenges in knowing why a deep neural network makes its predictions. So, researchers try to crack open this "black box" after a network is trained to correlate results with inputs. But, what if the goal of explainability could be designed into the network's architecture -- before the model is trained and without reducing its predictive power? Maybe the box could stay open from the beginning.
Convolutional Neural Networks, Deep Learning, Explainability, Explainable AI, Image Recognition
- Production Machine Learning Monitoring: Outliers, Drift, Explainers & Statistical Performance - Dec 21, 2020.
A practical deep dive on production monitoring architectures for machine learning at scale using real-time metrics, outlier detectors, drift detectors, metrics servers and explainers.
AI, Deployment, Explainable AI, Machine Learning, Modeling, Outliers, Production, Python
- tensorflow + dalex = :) , or how to explain a TensorFlow model - Nov 13, 2020.
Having a machine learning model that generates interesting predictions is one thing. Understanding why it makes these predictions is another. For a tensorflow predictive model, it can be straightforward and convenient develop an explainable AI by leveraging the dalex Python package.
Dalex, Explainability, Explainable AI, Machine Learning, Python, TensorFlow
- Interpretability, Explainability, and Machine Learning – What Data Scientists Need to Know - Nov 4, 2020.
The terms “interpretability,” “explainability” and “black box” are tossed about a lot in the context of machine learning, but what do they really mean, and why do they matter?
Explainability, Explainable AI, Interpretability, Machine Learning
- KDnuggets™ News 20:n42, Nov 4: Top Python Libraries for Data Science, Data Visualization & Machine Learning; Mastering Time Series Analysis - Nov 4, 2020.
Top Python Libraries for Data Science, Data Visualization, Machine Learning; Mastering Time Series Analysis with Help From the Experts; Explaining the Explainable AI: A 2-Stage Approach; The Missing Teams For Data Scientists; and more.
Career Advice, Data Science Team, Explainable AI, Python, Time Series
- Explaining the Explainable AI: A 2-Stage Approach - Oct 29, 2020.
Understanding how to build AI models is one thing. Understanding why AI models provide the results they provide is another. Even more so, explaining any type of understanding of AI models to humans is yet another challenging layer that must be addressed if we are to develop a complete approach to Explainable AI.
AI, Explainability, Explainable AI, XAI
- Explainable and Reproducible Machine Learning Model Development with DALEX and Neptune - Aug 27, 2020.
With ML models serving real people, misclassified cases (which are a natural consequence of using ML) are affecting peoples’ lives and sometimes treating them very unfairly. It makes the ability to explain your models’ predictions a requirement rather than just a nice to have.
Dalex, Explainability, Explainable AI, Interpretability, Python, SHAP
- KDnuggets™ News 19:n49, Dec 27: What is a Data Scientist Worth? New Explainable AI from Google - Dec 27, 2019.
What is a Data Scientist Worth?; Google's New Explainable AI Service; The Most In Demand Tech Skills for Data Scientists; The 4 fastest ways NOT to get hired as a data scientist; and KDnuggets Cartoon which was included in a surprising textbook.
Data Science Skills, Data Scientist, Explainable AI, Google, Hiring, Salary
- Google’s New Explainable AI Service - Dec 20, 2019.
Google has started offering a new service for “explainable AI” or XAI, as it is fashionably called. Presently offered tools are modest, but the intent is in the right direction.
AI, Explainability, Explainable AI, Google
- Interpretability: Cracking open the black box, Part 2 - Dec 11, 2019.
The second part in a series on leveraging techniques to take a look inside the black box of AI, this guide considers post-hoc interpretation that is useful when the model is not transparent.
Explainability, Explainable AI, Feature Selection, Interpretability, Python
- Explainability: Cracking open the black box, Part 1 - Dec 4, 2019.
What is Explainability in AI and how can we leverage different techniques to open the black box of AI and peek inside? This practical guide offers a review and critique of the various techniques of interpretability.
Explainability, Explainable AI, Interpretability, XAI
- Opening Black Boxes: How to leverage Explainable Machine Learning - Aug 1, 2019.
A machine learning model that predicts some outcome provides value. One that explains why it made the prediction creates even more value for your stakeholders. Learn how Interpretable and Explainable ML technologies can help while developing your model.
Explainable AI, Feature Selection, LIME, Machine Learning, SHAP, XAI
- “Please, explain.” Interpretability of machine learning models - May 9, 2019.
Unveiling secrets of black box models is no longer a novelty but a new business requirement and we explain why using several different use cases.
Bias, Explainable AI, Interpretability, LIME, Machine Learning, SHAP, XAI
- An introduction to explainable AI, and why we need it - Apr 15, 2019.
We introduce explainable AI, why it is needed, and present the Reversed Time Attention Model, Local Interpretable Model-Agnostic Explanation and Layer-wise Relevance Propagation.
AI, Explainable AI, LIME, Machine Learning, XAI
- Explainable AI or Halting Faulty Models ahead of Disaster - Mar 27, 2019.
A brief overview of a new method for explainable AI (XAI), called anchors, introduce its open-source implementation and show how to use it to explain models predicting the survival of Titanic passengers.
AI, Explainable AI, Kaggle, LIME, Titanic, XAI
- The AI Black Box Explanation Problem - Mar 25, 2019.
Introducing Black Box AI, a system for automated decision making often based on machine learning over big data, which maps a user’s features into a class predicting the behavioural traits of the individuals.
AI, Explainable AI, GDPR
- Explainable Artificial Intelligence - Jan 10, 2019.
We outline the necessity of explainable AI, discuss some of the methods in academia, take a look at explainability vs accuracy, investigate use cases, and more.
AI, Explainable AI, LIME, XAI
- A Case For Explainable AI & Machine Learning - Dec 27, 2018.
In support of the explainable AI cause, we present a variety of use cases covering operational needs, regulatory compliance and public trust and social acceptance.
Bias, Explainable AI, Explanation, Interpretability, Machine Learning
- Machine Learning Explainability vs Interpretability: Two concepts that could help restore trust in AI - Dec 20, 2018.
We explain the key differences between explainability and interpretability and why they're so important for machine learning and AI, before taking a look at several techniques and methods for improving machine learning interpretability.
AI, Explainable AI, Explanation, Interpretability, Machine Learning
- Four Approaches to Explaining AI and Machine Learning - Dec 12, 2018.
We discuss several explainability techniques being championed today, including LOCO (leave one column out), permutation impact, and LIME (local interpretable model-agnostic explanations).
AI, Explainable AI, Interpretability, LIME, Machine Learning
- Explainable Artificial Intelligence (Part 2) – Model Interpretation Strategies - Dec 6, 2018.
The aim of this article is to give you a good understanding of existing, traditional model interpretation methods, their limitations and challenges. We will also cover the classic model accuracy vs. model interpretability trade-off and finally take a look at the major strategies for model interpretation.
Pages: 1 2
Explainable AI, Interpretability, LIME, Machine Learning, SHAP
- Interpretability is crucial for trusting AI and machine learning - Nov 30, 2018.
We explain what exactly interpretability is and why it is so important, focusing on its use for data scientists, end users and regulators.
AI, Explainable AI, Explanation, Interpretability, Machine Learning, Trust
- How Important is that Machine Learning Model be Understandable? We analyze poll results - Nov 19, 2018.
About 85% of respondents said it was always or frequently important that Machine Learning model be understandable. This was is especially important for academic researchers, and surprisingly more in US/Canada than in Europe or Asia.
Asia, Europe, Explainable AI, Explanation, GDPR, Machine Learning, Poll, USA
- Using Uncertainty to Interpret your Model - Nov 16, 2018.
We outline why you should care about uncertainty and discuss the different types, including model, data and measurement uncertainty and what different purposes these all serve.
Explainable AI, Interpretability, Taboola, Uncertainty
- Four Big Data Trends for 2018 - Jan 25, 2018.
Curious about the future of Big Data and AI? Here’s what the trends have it in 2018 for innovations.
2018 Predictions, AI, Big Data, Chatbot, Explainable AI, IoT, Trends