- Coding Ethics for AI & AIOps: Designing Responsible AI Systems - Aug 26, 2021.
AI ops has taken Human machine collaboration to the next level where humans and machines are not just coexisting but are collaborating and working together like team members.
AI, Bias, DevOps, Ethics, ModelOps, Responsible AI
- MLOps And Machine Learning Roadmap - Aug 12, 2021.
A 16–20 week roadmap to review machine learning and learn MLOps.
Courses, DataRobot, Deployment, DevOps, Kubeflow, Kubernetes, Machine Learning, Microsoft Azure, MLOps
- MLOps: Model Monitoring 101 - Jan 6, 2021.
Model monitoring using a model metric stack is essential to put a feedback loop from a deployed ML model back to the model building stage so that ML models can constantly improve themselves under different scenarios.
AI, Data Science, DevOps, Machine Learning, MLOps, Modeling
- MLOps – “Why is it required?” and “What it is”? - Dec 18, 2020.
Creating an model that works well is only a small aspect of delivering real machine learning solutions. Learn about the motivation behind MLOps, the framework and its components that will help you get your ML model into production, and its relation to DevOps from the world of traditional software development.
Data Science, DevOps, MLOps
- You Don’t Have to Use Docker Anymore - Oct 29, 2020.
Docker is not the only containerization tool out there and there might just be better alternatives…
Containers, Data Engineering, DevOps, Docker
- Automating Every Aspect of Your Python Project - Sep 18, 2020.
Every Python project can benefit from automation using Makefile, optimized Docker images, well configured CI/CD, Code Quality Tools and more…
Development, DevOps, Docker, Programming, Python
- Data Science Meets Devops: MLOps with Jupyter, Git, and Kubernetes - Aug 21, 2020.
An end-to-end example of deploying a machine learning product using Jupyter, Papermill, Tekton, GitOps and Kubeflow.
Data Science, DevOps, Jupyter, Kubeflow, Kubernetes, MLOps
- Scaling the Wall Between Data Scientist and Data Engineer - Feb 17, 2020.
The educational and research focuses of machine learning tends to highlight the model building, training, testing, and optimization aspects of the data science process. To bring these models into use requires a suite of engineering feats and organization, a standard for which does not yet exist. Learn more about a framework for operating a collaborative data science and engineering team to deploy machine learning models to end-users.
Advice, Data Engineer, Data Engineering, Data Scientist, Deployment, DevOps, Machine Learning Engineer, MLflow, MLOps, Production
- Observability for Data Engineering - Feb 10, 2020.
Going beyond traditional monitoring techniques and goals, understanding if a system is working as intended requires a new concept in DevOps, called Observability. Learn more about this essential approach to bring more context to your system metrics.
Data Engineering, DevOps, Explainability, KPI, Monitoring, Time Series
- Easy, One-Click Jupyter Notebooks - Jul 24, 2019.
All of the setup for software, networking, security, and libraries is automatically taken care of by the Saturn Cloud system. Data Scientists can then focus on the actual Data Science and not the tedious infrastructure work that falls around it
Big Data, Cloud, Data Science, Data Scientist, DevOps, Jupyter, Python, Saturn Cloud
- DevOps for Data Scientists: Taming the Unicorn - Jul 27, 2018.
How do we version control the model and add it to an app? How will people interact with our website based on the outcome? How will it scale!?
Data Science, Data Scientist, DevOps, Unicorn, Version Control
- Torus for Docker-First Data Science - May 8, 2018.
To help data science teams adopt Docker and apply DevOps best practices to streamline machine learning delivery pipelines, we open-sourced a toolkit based on the popular cookiecutter project structure.
Data Science, DevOps, Docker, Machine Learning Engineer, Open Source, Python
- Operational Machine Learning: Seven Considerations for Successful MLOps - Apr 30, 2018.
In this article, we describe seven key areas to take into account for successful operationalization and lifecycle management (MLOps) of your ML initiatives
DevOps, Machine Learning, Metrics, MLOps
- Applying Machine Learning to DevOps - Feb 27, 2018.
This article explains the synergy between DevOps and Machine Learning and their applications like tracking application delivery, troubleshooting and triage analytics, preventing production failures, etc.
DevOps, Machine Learning
- The dynamics between AI and IoT - Apr 18, 2017.
We see the need for a new type of Engineer who will combine knowledge from Electronics & IoT with Machine learning, AI, Robotics, Cloud and Data management (devops).
AI, Cloud Computing, Data Management, DevOps, Engineer, IoT, Robots
- Big Data Science: Expectation vs. Reality - Oct 27, 2016.
The path to success and happiness of the data science team working with big data project is not always clear from the beginning. It depends on maturity of underlying platform, their cross skills and devops process around their day-to-day operations.
Big Data, Big Data Engineer, Data Science, Data Science Team, DevOps