- Hands-On Reinforcement Learning Course, Part 2 - Dec 28, 2021.
Continue your learning journey in Reinforcement Learning with this second of two part tutorial that covers the foundations of the technique with examples and Python code.
Agents, Beginners, Python, Reinforcement Learning
- Hands-On Reinforcement Learning Course, Part 1 - Dec 22, 2021.
Start your learning journey in Reinforcement Learning with this first of two part tutorial that covers the foundations of the technique with examples and Python code.
Agents, Beginners, Python, Reinforcement Learning
- A Beginner’s Guide to End to End Machine Learning - Dec 6, 2021.
Learn to train, tune, deploy and monitor machine learning models.
Beginners, Machine Learning, MLflow, PyCaret, Python
- The Common Misconceptions About Machine Learning - Nov 9, 2021.
Beginners in the field can often have many misconceptions about machine learning that sometimes can be a make-it-or-break-it moment for the individual switching careers or starting fresh. This article clearly describes the ground truth realities about learning new ML skills and eventually working professionally as a machine learning engineer.
Beginners, Career Advice, Deep Learning, Machine Learning, Machine Learning Engineer
- Data Scientist Career Path from Novice to First Job - Nov 3, 2021.
If you are beginning your data science journey, then you must be prepared to plan it out as a step-by-step process that will guide you from being a total newbie to getting your first job as a data scientist. These tips and educational resources should be useful for you and add confidence as you take that first big step.
Beginners, Career Advice, Data Scientist
- Learn To Reproduce Papers: Beginner’s Guide - Oct 25, 2021.
Step-by-step instructions on how to understand Deep Learning papers and implement the described approaches.
Beginners, Deep Learning, Papers with code, Research
- Avoid These Five Behaviors That Make You Look Like A Data Novice - Oct 18, 2021.
If you are new to the Data Science industry or a well-versed veteran in all things data and analytics, there are always key pitfalls that each of us can easily slide into if we are not careful. These behaviors not only make us appear like novices, but they can risk our position as a trustworthy, likable data partner with stakeholder.
Beginners, Career Advice
- 8 Deep Learning Project Ideas for Beginners - Sep 9, 2021.
Have you studied Deep Learning techniques, but never worked on a useful project? Here, we highlight eight deep learning project ideas for beginners that will help you sharpen your skills and boost your resume.
Beginners, Deep Learning, Project
- Practising SQL without your own database - Aug 10, 2021.
SQL is a very important skill for data analysts and data scientists. However, when you are just starting out learning in the field, how can you practice querying with SQL if you don’t have any data stored in a database?
Beginners, Data.world, SQL
- 30 Most Asked Machine Learning Questions Answered - Aug 3, 2021.
There is always a lot to learn in machine learning. Whether you are new to the field or a seasoned practitioner and ready for a refresher, understanding these key concepts will keep your skills honed in the right direction.
Beginners, Interview Questions, Machine Learning, Regression, scikit-learn
- A Brief Introduction to the Concept of Data - Jul 29, 2021.
Every aspiring data scientist must know the concept of data and the kind of analysis they can run. This article introduces the concept of data (quantitative and qualitative) and the types of analysis.
Beginners, Data Analytics, Data Science, Qualitative Analytics, Quantitative Analytics, Statistics
- Advice for Learning Data Science from Google’s Director of Research - Jul 19, 2021.
Surfing the professional career wave in data science is a hot prospect for many looking to get their start in the world. The digital revolution continues to create many exciting new opportunities. But, jumping in too fast without fully establishing your foundational skills can be detrimental to your success, as is suggested by this advice for data science newbies from Peter Norvig, the Director of Research at Google.
Advice, Beginners, Data Science, Data Science Education, Machine Learning, Peter Norvig
- Date Processing and Feature Engineering in Python - Jul 15, 2021.
Have a look at some code to streamline the parsing and processing of dates in Python, including the engineering of some useful and common features.
Beginners, Data Preprocessing, Data Processing, Feature Engineering, Python, Time Series
- 10 Mistakes You Should Avoid as a Data Science Beginner - Jun 29, 2021.
Read this article on how to gain a competitive advantage in the data science job market.
Beginners, Career Advice, Data Science
- Beginners Guide to Debugging TensorFlow Models - Jun 15, 2021.
If you are new to working with a deep learning framework, such as TensorFlow, there are a variety of typical errors beginners face when building and training models. Here, we explore and solve some of the most common errors to help you develop a better intuition for debugging in TensorFlow.
Beginners, Deep Learning, TensorFlow
- Top 10 Data Science Projects for Beginners - Jun 11, 2021.
Check out these projects for ideas to strengthen your skills and build a portfolio that stands out.
Beginners, Data Science, Portfolio, Project
- A checklist to track your Data Science progress - May 19, 2021.
Whether you are just starting out in data science or already a gainfully-employed professional, always learning more to advance through state-of-the-art techniques is part of the adventure. But, it can be challenging to track of your progress and keep an eye on what's next. Follow this checklist to help you scale your expertise from entry-level to advanced.
Advice, Beginners, Data Preparation, Data Science, Deep Learning
- The NoSQL Know-It-All Compendium - May 13, 2021.
Are you a NoSQL beginner, but want to become a NoSQL Know-It-All? Well, this is the place for you. Get up to speed on NoSQL technologies from a beginner's point of view, with this collection of related progressive posts on the subject. NoSQL? No problem!
Beginners, Databases, NoSQL, SQL
- Getting Started with Reinforcement Learning - Apr 26, 2021.
Demystifying some of the main concepts and terminologies associated with Reinforcement Learning and their association with other fields of AI.
AI, Beginners, Reinforcement Learning
- The Portfolio Guide for Data Science Beginners - Mar 22, 2021.
Whether you are an aspiring or seasoned Data Scientist, establishing a clear and well-designed online portfolio presence will help you stand out in the industry, and provide potential employers a powerful understanding of your work and capabilities. These tips will help you brainstorm and launch your first data science portfolio.
Beginners, Data Science Skills, Data Scientist, Portfolio
- Document Databases, Explained - Mar 9, 2021.
Out of all the NoSQL database types, document-stores are considered the most sophisticated ones. They store data in a JSON format which as opposed to a classic rows and columns structure.
Beginners, Databases, NoSQL
- Graph Databases, Explained - Feb 26, 2021.
Between the four main NoSQL database types, graph databases are widely appreciated for their application in handling large sets of unstructured data coming from various sources. Let’s talk about how graph databases work and what are their practical uses.
Beginners, Databases, Graph Databases, NoSQL
- Column-Oriented Databases, Explained - Feb 12, 2021.
NoSQL Databases have four distinct types. Key-value stores, document-stores, graph databases, and column-oriented databases. In this article, we’ll explore column-oriented databases, also known simply as “NoSQL columns”.
Beginners, Databases, NoSQL, Programming
- 20 Core Data Science Concepts for Beginners - Dec 8, 2020.
With so much to learn and so many advancements to follow in the field of data science, there are a core set of foundational concepts that remain essential. Twenty of these ideas are highlighted here that are key to review when preparing for a job interview or just to refresh your appreciation of the basics.
Beginners, Bias, Cross-validation, Data Science, Data Visualization, Data Wrangling, Outliers, PCA, Variance
- NoSQL for Beginners - Dec 2, 2020.
NoSQL can offer an advantage to those who are entering Data Science and Analytics, as well as having applications with high-performance needs that aren’t met by traditional SQL databases.
Beginners, Data Science, Database, NoSQL
- 15 Exciting AI Project Ideas for Beginners - Nov 23, 2020.
There are many branches to AI to learn, but a project-based approach can keep things interesting. Here is a list of 15 such projects you can get started on implementing today.
AI, Beginners, Great Learning
- Top 6 Data Science Programs for Beginners - Nov 20, 2020.
Udacity has the best industry-leading programs in data science. Here are the top six data science courses for beginners to help you get started.
Beginners, Certificate, Data Engineer, Data Science Education, Data Visualization, Online Education, Python, R, SQL, Udacity
- An Introduction to AI, updated - Oct 28, 2020.
We provide an introduction to key concepts and methods in AI, covering Machine Learning and Deep Learning, with an updated extensive list that includes Narrow AI, Super Intelligence, and Classic Artificial Intelligence, as well as recent ideas of NeuroSymbolic AI, Neuroevolution, and Federated Learning.
AGI, AI, Beginners, Deep Learning, Machine Learning
- How to ace the data science coding challenge - Oct 15, 2020.
Preparing to interview for a Data Scientist position takes preparation and practice, and then it could all boil down to a final review of your skills. Based on personal experience, these tips on how to approach such a review will help you excel in the coding challenge project for your next interview.
Beginners, Challenge, Data Science, Interview, Programming
- Machine Learning from Scratch: Free Online Textbook - Sep 22, 2020.
If you are looking for a machine learning starter that gets right to the core of the concepts and the implementation, then this new free textbook will help you dive in to ML engineering with ease. By focusing on the basics of the underlying algorithms, you will be quickly up and running with code you construct yourself.
Beginners, Free ebook, Machine Learning, Online Education
- An Introduction to NLP and 5 Tips for Raising Your Game - Sep 11, 2020.
This article is a collection of things the author would like to have known when they started out in NLP. Perhaps it will be useful for you.
Beginners, NLP, Python
- Getting Started with Feature Selection - Aug 25, 2020.
For machine learning, more data is always better. What about more features of data? Not necessarily. This beginners' guide with code examples for selecting the most useful features from your data will jump start you toward developing the most effective and efficient learning models.
Beginners, Data Preparation, Feature Selection
- How Do Neural Networks Learn? - Aug 17, 2020.
With neural networks being so popular today in AI and machine learning development, they can still look like a black box in terms of how they learn to make predictions. To understand what is going on deep in these networks, we must consider how neural networks perform optimization.
Beginners, Neural Networks
- Introduction to Statistics for Data Science - Aug 12, 2020.
Statistics is foundational for Data Science and a crucial skill to master for any practitioner. This advanced introduction reviews with examples the fundamental concepts of inferential statistics by illustrating the differences between Point Estimators and Confidence Intervals Estimates.
Beginners, Data Science, Statistics
- First Steps of a Data Science Project - Jul 29, 2020.
Many data science projects are launched with good intentions, but fail to deliver because the correct process is not understood. To achieve good performance and results in this work, the first steps must include clearly defining goals and outcomes, collecting data, and preparing and exploring the data. This is all about solving problems, which requires a systematic process.
Beginners, Data Exploration, Data Preparation, Data Science
- Understanding Time Series with R - Jul 9, 2020.
Analyzing time series is such a useful resource for essentially any business, data scientists entering the field should bring with them a solid foundation in the technique. Here, we decompose the logical components of a time series using R to better understand how each plays a role in this type of analysis.
Beginners, Business Analytics, Data Analysis, R, Time Series
- A Layman’s Guide to Data Science. Part 3: Data Science Workflow - Jul 6, 2020.
Learn and appreciate the typical workflow for a data science project, including data preparation (extraction, cleaning, and understanding), analysis (modeling), reflection (finding new paths), and communication of the results to others.
Beginners, Data Science, Data Workflow, Sciforce, Workflow
- Getting Started with TensorFlow 2 - Jul 2, 2020.
Learn about the latest version of TensorFlow with this hands-on walk-through of implementing a classification problem with deep learning, how to plot it, and how to improve its results.
Advice, Beginners, Deep Learning, Python, Regularization, TensorFlow
- A Classification Project in Machine Learning: a gentle step-by-step guide - Jun 17, 2020.
Classification is a core technique in the fields of data science and machine learning that is used to predict the categories to which data should belong. Follow this learning guide that demonstrates how to consider multiple classification models to predict data scrapped from the web.
Beginners, Classification, Machine Learning
- Beginners Learning Path for Machine Learning - May 5, 2020.
So, you are interested in machine learning? Here is your complete learning path to start your career in the field.
Beginners, Learning Path, Machine Learning
- A Layman’s Guide to Data Science. Part 2: How to Build a Data Project - Apr 2, 2020.
As Part 2 in a Guide to Data Science, we outline the steps to build your first Data Science project, including how to ask good questions to understand the data first, how to prepare the data, how to develop an MVP, reiterate to build a good product, and, finally, present your project.
Advice, Beginners, Data Preparation, Data Science, Sciforce
- A Beginner’s Guide to Data Integration Approaches in Business Intelligence - Mar 18, 2020.
An integrated BI system has a trickle-down effect on all business processes, especially reporting and analytics. Find out how integration can help you leverage the power of BI.
Beginners, Business Intelligence, Data Integration
- Python Pandas For Data Discovery in 7 Simple Steps - Mar 10, 2020.
Just getting started with Python's Pandas library for data analysis? Or, ready for a quick refresher? These 7 steps will help you become familiar with its core features so you can begin exploring your data in no time.
Beginners, Data Preparation, Pandas, Python
- Decision Tree Intuition: From Concept to Application - Feb 27, 2020.
While the use of Decision Trees in machine learning has been around for awhile, the technique remains powerful and popular. This guide first provides an introductory understanding of the method and then shows you how to construct a decision tree, calculate important analysis parameters, and plot the resulting tree.
Beginners, Decision Trees, Machine Learning
- How to learn data science on your own: a practical guide - Feb 11, 2020.
While much focus today is on the rise in working from home and the challenges experienced, not as much is said about learning from home. For those lone wolfs studying Data Science in a self-directed way, a range of issues can get in the way of your goal. Learn about these common problems to prepare to focus yourself all the way to your educational goals.
Advice, Beginners, Data Science Education, MOOC
- Intro to Machine Learning and AI based on high school knowledge - Feb 5, 2020.
Machine learning information is becoming pervasive in the media as well as a core skill in new, important job sectors. Getting started in the field can require learning complex concepts, and this article outlines an approach on how to begin learning about these exciting topics based on high school knowledge.
AI, Beginners, Linear Regression, Machine Learning, Mathematics
- 3 common data science career transitions, and how to make them happen - Jan 6, 2020.
Breaking into a career in Data Science can depend on where you start. See if you fit into one of these three categories of "newbies," and then find out how to make your professional transition into the field.
Beginners, Career, Data Scientist, Software Engineer
- Beginner’s Guide to K-Nearest Neighbors in R: from Zero to Hero - Jan 3, 2020.
This post presents a pipeline of building a KNN model in R with various measurement metrics.
Beginners, K-nearest neighbors, Metrics, R
- How To “Ultralearn” Data Science: removing distractions and finding focus, Part 2 - Dec 17, 2019.
This second part in a series about how to "ultralearn" data science will guide you through several techniques to remove those distractions -- because your focus needs more focus.
Beginners, Data Science, Education, Ultralearn
- How To “Ultralearn” Data Science, Part 1 - Dec 13, 2019.
What is "ultralearning" and how can you follow the strategy to become an expert of data science? Start with this first part in a series that will guide you through this self-motivated methodology to help you efficiently master difficult skills.
Beginners, Data Science, Education, Ultralearn
- Advice for New and Junior Data Scientists - Nov 22, 2019.
If you are a new Data Scientist early in your professional journey, and you’re a bit confused and lost, then follow this advice to figure out how to best contribute to your company.
Advice, Beginners, Career, Data Scientist
- Beginners Guide to the Three Types of Machine Learning - Nov 13, 2019.
The following article is an introduction to classification and regression — which are known as supervised learning — and unsupervised learning — which in the context of machine learning applications often refers to clustering — and will include a walkthrough in the popular python library scikit-learn.
Beginners, Classification, Machine Learning, Python, Regression, scikit-learn, Supervised Learning, Unsupervised Learning
- Data Cleaning and Preprocessing for Beginners - Nov 7, 2019.
Careful preprocessing of data for your machine learning project is crucial. This overview describes the process of data cleaning and dealing with noise and missing data.
Beginners, Data Cleaning, Data Preprocessing, Pandas, Python, Sciforce
- Designing Your Neural Networks - Nov 4, 2019.
Check out this step-by-step walk through of some of the more confusing aspects of neural nets to guide you to making smart decisions about your neural network architecture.
Beginners, Classification, Dropout, Gradient Descent, Neural Networks, Regression
- Introduction to Natural Language Processing (NLP) - Oct 25, 2019.
Have you ever wondered how your personal assistant (e.g: Siri) is built? Do you want to build your own? Perfect! Let’s talk about Natural Language Processing.
Beginners, NLP
- 5 Tips for Novice Freelance Data Scientists - Oct 18, 2019.
If you want to launch your data science skills into freelance work, then check out these important tips to help you kick start your next adventure in data.
Advice, Beginners, Consulting, Data Scientist, Freelance
- How to Become a (Good) Data Scientist – Beginner Guide - Oct 16, 2019.
A guide covering the things you should learn to become a data scientist, including the basics of business intelligence, statistics, programming, and machine learning.
Beginners, BI, Data Scientist, Sciforce, Statistics
- Introduction to Artificial Neural Networks - Oct 8, 2019.
In this article, we’ll try to cover everything related to Artificial Neural Networks or ANN.
Beginners, Gradient Descent, Neural Networks
- Know Your Data: Part 2 - Oct 8, 2019.
To build an effective learning model, it is must to understand the quality issues exist in data & how to detect and deal with it. In general, data quality issues are categories in four major sets.
Beginners, Data Preparation, Data Preprocessing, Datasets
- Sentiment and Emotion Analysis for Beginners: Types and Challenges - Oct 1, 2019.
There are three types of emotion AI, and their combinations. In this article, I’ll briefly go through these three types and the challenges of their real-life applications.
Beginners, Emotion, NLP, Sentiment Analysis
- Know Your Data: Part 1 - Sep 30, 2019.
This article will introduce the different type of data sets, data object and attributes.
Beginners, Datasets
- 5 Beginner Friendly Steps to Learn Machine Learning and Data Science with Python - Sep 19, 2019.
“I want to learn machine learning and artificial intelligence, where do I start?” Here.
Beginners, Data Science, Machine Learning, Python
- An Easy Introduction to Machine Learning Recommender Systems - Sep 4, 2019.
Recommender systems are an important class of machine learning algorithms that offer "relevant" suggestions to users. Categorized as either collaborative filtering or a content-based system, check out how these approaches work along with implementations to follow from example code.
Beginners, Machine Learning, Python, Recommendation Engine, Recommender Systems
- Pytorch Cheat Sheet for Beginners and Udacity Deep Learning Nanodegree - Aug 2, 2019.
This cheatsheet should be easier to digest than the official documentation and should be a transitional tool to get students and beginners to get started reading documentations soon.
Beginners, Cheat Sheet, Deep Learning, Google Colab, Python, PyTorch, Udacity
- AI in the Family: how to teach machine learning to your kids - May 28, 2019.
AI is all the rage with today’s programmers, but what about the next generation? Machine learning can be introduced to young ones just now learning about code, and you can help spark their interest.
AI, Beginners, Data Science Education, Education, Kids, Online Education
- A complete guide to K-means clustering algorithm - May 16, 2019.
Clustering - including K-means clustering - is an unsupervised learning technique used for data classification. We provide several examples to help further explain how it works.
Beginners, Clustering, K-means
- Advice for New Data Scientists - Apr 8, 2019.
We provide advice for junior data scientists as they begin their career, with tips and commentary from a tech lead at Airbnb.
Advice, Beginners, Data Scientist
- A Beginner’s Guide to Linear Regression in Python with Scikit-Learn - Mar 29, 2019.
What linear regression is and how it can be implemented for both two variables and multiple variables using Scikit-Learn, which is one of the most popular machine learning libraries for Python.
Pages: 1 2
Beginners, Linear Regression, Python, scikit-learn
- Neural Networks with Numpy for Absolute Beginners: Introduction - Mar 5, 2019.
In this tutorial, you will get a brief understanding of what Neural Networks are and how they have been developed. In the end, you will gain a brief intuition as to how the network learns.
Beginners, Neural Networks, numpy, Python
- Python Data Science for Beginners - Feb 20, 2019.
Python’s syntax is very clean and short in length. Python is open-source and a portable language which supports a large standard library. Buy why Python for data science? Read on to find out more.
Beginners, Data Science, Matplotlib, numpy, Pandas, Python, scikit-learn, SciPy
- Is Domain Knowledge a Hurdle to Start a Career in Data? - Feb 8, 2019.
How would I decide which domain to choose, while starting my career in data? Is it an obstacle?
Beginners, Career, Domain Knowledge
- Exploring Python Basics - Jan 31, 2019.
This free eBook is a great resource for any beginner, providing a good introduction into Python, a look at the basics of learning a programming language and explores modelling and predictions.
Beginners, Book, Manning, Python
- An Introduction to AI - Nov 21, 2018.
We provide an introduction to AI key terminologies and methodologies, covering both Machine Learning and Deep Learning, with an extensive list including Narrow AI, Super Intelligence, Classic Artificial Intelligence, and more.
AI, Beginners
- Apache Spark Introduction for Beginners - Oct 18, 2018.
An extensive introduction to Apache Spark, including a look at the evolution of the product, use cases, architecture, ecosystem components, core concepts and more.
Apache Spark, Beginners, Hadoop, R
- How To Learn Data Science If You’re Broke - Oct 9, 2018.
A first-hand account on how to learn data science on a budget, with advice covering useful resources, a recommended curriculum, typical concepts, building a portfolio and more.
Beginners, Career, Data Science, Data Science Education
- Introduction to Deep Learning - Sep 28, 2018.
I decided to begin to put some structure in my understanding of Neural Networks through this series of articles.
Beginners, Deep Learning, Neural Networks
- Free resources to learn Natural Language Processing - Sep 18, 2018.
An extensive list of free resources to help you learn Natural Language Processing, including explanations on Text Classification, Sequence Labeling, Machine Translation and more.
Beginners, Machine Learning, Machine Translation, NLP, Sentiment Analysis, Text Classification
- Hadoop for Beginners - Sep 12, 2018.
An introduction to Hadoop, a framework that enables you to store and process large data sets in parallel and distributed fashion.
Beginners, Big Data, Hadoop
- Linear Regression In Real Life - Aug 28, 2018.
A helpful guide to Linear Regression, using an example of a friends road trip to Las Vegas to highlight how it can be used in a real life situation.
Beginners, Linear Regression
- Natural Language Processing Nuggets: Getting Started with NLP - Jun 19, 2018.
Check out this collection of NLP resources for beginners, starting from zero and slowly progressing to the point that readers should have an idea of where to go next.
Beginners, Data Preparation, NLP, Text Mining
- A Beginner’s Guide to the Data Science Pipeline - May 29, 2018.
On one end was a pipe with an entrance and at the other end an exit. The pipe was also labeled with five distinct letters: "O.S.E.M.N."
Beginners, Data Science, Pipeline
- Top SAS Courses Online - May 11, 2018.
High quality SAS training for beginners is out there and I’ll help you find it.
Beginners, Coursera, Online Education, SAS, Udemy
- Getting Started with Machine Learning in One Hour! - Nov 1, 2017.
Here is a machine learning getting started guide which grew out of the author's notes for a one hour talk on the subject. Hopefully you find the path helpful.
Beginners, Machine Learning
- Top 6 errors novice machine learning engineers make - Oct 30, 2017.
What common mistakes beginners do when working on machine learning or data science projects? Here we present list of such most common errors.
Beginners, Machine Learning, Mistakes, Outliers, Regression, Regularization, Time Series
- Neural Networks, Step 1: Where to Begin with Neural Nets & Deep Learning - Oct 28, 2017.
This is a short post for beginners learning neural networks, covering several essential neural networks concepts.
Beginners, Deep Learning, Neural Networks
- Top 10 Machine Learning Algorithms for Beginners - Oct 20, 2017.
A beginner's introduction to the Top 10 Machine Learning (ML) algorithms, complete with figures and examples for easy understanding.
Pages: 1 2
Adaboost, Algorithms, Apriori, Bagging, Beginners, Boosting, Decision Trees, Ensemble Methods, Explained, K-means, K-nearest neighbors, Linear Regression, Logistic Regression, Machine Learning, Naive Bayes, PCA, Top 10
- Introduction to Neural Networks, Advantages and Applications - Jul 25, 2017.
Artificial Neural Network (ANN) algorithm mimic the human brain to process information. Here we explain how human brain and ANN works.
Pages: 1 2
Applications, Beginners, Brain, Neural Networks
- Getting Started with Python for Data Analysis - Jul 5, 2017.
A guide for beginners to Python for getting started with data analysis.
Beginners, Data Analysis, Jupyter, numpy, Python
- Deep Learning Zero to One: 5 Awe-Inspiring Demos with Code for Beginners, part 2 - Jul 1, 2017.
Here are deep learning examples and demos you can just download and run, including Spotify Artist Search using Speech APIs, Symbolic AI Speech Recognition, and Algorithmia API Photo Colorizer.
AI, Algorithmia, Beginners, Clarifai, Deep Learning, GitHub, iOS, Speech Recognition, Spotify
- Introduction to Correlation - Feb 22, 2017.
Correlation is one of the most widely used (and widely misunderstood) statistical concepts. We provide the definitions and intuition behind several types of correlation and illustrate how to calculate correlation using the Python pandas library.
Beginners, Correlation, Datascience.com, Pandas, Python, Statistics
- Data Science Basics: Power Laws and Distributions - Dec 21, 2016.
Power laws and other relationships between observable phenomena may not seem like they are of any interest to data science, at least not to newcomers to the field, but this post provides an overview and suggests how they may be.
Beginners, Data Science, Distribution, Zipf's Law
- Data Science Basics: What Types of Patterns Can Be Mined From Data? - Dec 14, 2016.
Why do we mine data? This post is an overview of the types of patterns that can be gleaned from data mining, and some real world examples of said patterns.
Beginners, Classification, Data Science, Frequent Pattern Mining, Outliers, Regression
- Introduction to Machine Learning for Developers - Nov 28, 2016.
Whether you are integrating a recommendation system into your app or building a chat bot, this guide will help you get started in understanding the basics of machine learning.
Pages: 1 2
Beginners, Classification, Clustering, Machine Learning, Pandas, Python, R, scikit-learn, Software Developer
- Data Science and Big Data, Explained - Nov 14, 2016.
This article is meant to give the non-data scientist a solid overview of the many concepts and terms behind data science and big data. While related terms will be mentioned at a very high level, the reader is encouraged to explore the references and other resources for additional detail.
Beginners, Big Data, Data Science, Explained
- How to Rank 10% in Your First Kaggle Competition - Nov 9, 2016.
This post presents a pathway to achieving success in Kaggle competitions as a beginner. The path generalizes beyond competitions, however. Read on for insight into succeeding while approaching any data science project.
Pages: 1 2 3 4
Beginners, Competition, Data Science, Kaggle, Machine Learning, Python
- Data Science Basics: An Introduction to Ensemble Learners - Nov 8, 2016.
New to classifiers and a bit uncertain of what ensemble learners are, or how different ones work? This post examines 3 of the most popular ensemble methods in an approach designed for newcomers.
Beginners, Boosting, Data Science, Ensemble Methods
- Data Science 101: How to get good at R - Nov 1, 2016.
Everybody talks about R programming, how to learn, how to be good at it. But in this article, Ari Lamstein tells us his story about why and how he started with R along with how to publish, market and monetise R projects.
Ari Lamstein, Beginners, Data Science, Monetizing, Programming, R
- A Beginner’s Guide to Neural Networks with Python and SciKit Learn 0.18! - Oct 20, 2016.
This post outlines setting up a neural network in Python using Scikit-learn, the latest version of which now has built in support for Neural Network models.
Pages: 1 2
Beginners, Machine Learning, Neural Networks, Python, scikit-learn
- Data Science Basics: Data Mining vs. Statistics - Sep 28, 2016.
As a beginner I was confused at the relationship between data mining and statistics. This is my attempt to help straighten out this connection for others who may now be in my old shoes.
Beginners, Data Mining, Statistics
- Data Science Basics: 3 Insights for Beginners - Sep 22, 2016.
For data science beginners, 3 elementary issues are given overview treatment: supervised vs. unsupervised learning, decision tree pruning, and training vs. testing datasets.
Algorithms, Beginners, Datasets, Overfitting, Supervised Learning, Unsupervised Learning
- A Beginner’s Guide To Understanding Convolutional Neural Networks Part 2 - Sep 8, 2016.
This is the second part of a thorough introductory treatment of convolutional neural networks. Have a look after reading the first part.
Pages: 1 2
Beginners, Convolutional Neural Networks, Deep Learning, Neural Networks
- A Beginner’s Guide To Understanding Convolutional Neural Networks Part 1 - Sep 6, 2016.
Interested in better understanding convolutional neural networks? Check out this first part of a very comprehensive overview of the topic.
Pages: 1 2
Beginners, Convolutional Neural Networks, Deep Learning, Neural Networks
- The Gentlest Introduction to Tensorflow – Part 2 - Aug 19, 2016.
Check out the second and final part of this introductory tutorial to TensorFlow.
Pages: 1 2
Beginners, Deep Learning, Gradient Descent, Machine Learning, TensorFlow
- A Beginner’s Guide to Neural Networks with R! - Aug 11, 2016.
In this article we will learn how Neural Networks work and how to implement them with the R programming language! We will see how we can easily create Neural Networks with R and even visualize them. Basic understanding of R is necessary to understand this article.
Pages: 1 2
Beginners, Neural Networks, R, Udemy
- Data Science Statistics 101 - Jul 28, 2016.
Statistics can often be the most intimidating aspect of data science for aspiring data scientists to learn. Gain some personal perspective from someone who has traveled the path.
Beginners, Data Science, Statistics
- Data Science for Beginners 1: The 5 questions data science answers - Jul 26, 2016.
A series of videos and write-ups covering the basics of data science for beginners. This first video is about the kinds of questions that data science can answer.
Beginners, Data Science, Microsoft, Question answering
- Introduction to Random Forests® for Beginners – free ebook - Mar 6, 2014.
Random Forests is of the most powerful and successful machine learning techniques. This free ebook will help beginners to leverage the power of Random Forests.
Beginners, Decision Trees, ebook, Free, Kaggle, random forests algorithm, Salford Systems